我有一個根據每個(從高到低)wide format
dataframe
的最小值排列的。column
最大的最小值是column 1
,最小的最小值是last column
我想要實作的是每個最小值column
與下一個對應值的位置重合,column
依此類推。
這是一個例子dataframe
:
library(tidyverse)
library(data.table)
MA_vol <- c(0.2486667, 0.2463333, 0.2426667, 0.2423333, 0.2376667, 0.2323333, 0.2270000, 0.2246667, 0.2216667, 0.2203333, 0.2183333, 0.2126667, 0.2076667, 0.2060000)
R_id <- rep(15, length(MA_vol))
df1 <- data.frame(R_id, MA_vol)
MA_vol <- c(0.2073333, 0.2053333, 0.2013333, 0.1993333, 0.1973333, 0.1970000, 0.1966667, 0.1946667, 0.1920000, 0.1890000, 0.1883333, 0.1866667, 0.1843333, 0.1823333, 0.1810000)
R_id <- rep(13, length(MA_vol))
df2 <- data.frame(R_id, MA_vol)
MA_vol <- c(0.2016667, 0.1996667, 0.1980000, 0.1970000, 0.1963333, 0.1956667, 0.1930000, 0.1913333, 0.1900000, 0.1893333, 0.1890000, 0.1863333, 0.1853333, 0.1820000, 0.1800000, 0.1780000, 0.1763333)
R_id <- rep(4, length(MA_vol))
df3 <- data.frame(R_id, MA_vol)
MA_vol <- c(0.2180000, 0.2146667, 0.2126667, 0.2103333, 0.2070000, 0.2040000, 0.2010000, 0.1993333, 0.1956667, 0.1950000, 0.1926667, 0.1920000, 0.1896667, 0.1890000, 0.1856667, 0.1830000, 0.1786667, 0.1763333, 0.1733333, 0.1720000, 0.1700000, 0.1686667, 0.1670000)
R_id <- rep(8, length(MA_vol))
df4 <- data.frame(R_id, MA_vol)
MA_vol <- c(0.2096667, 0.2063333, 0.2030000, 0.1993333, 0.1953333, 0.1916667, 0.1880000, 0.1870000, 0.1850000, 0.1830000, 0.1783333, 0.1753333, 0.1726667, 0.1716667, 0.1673333, 0.1666667, 0.1656667)
R_id <- rep(2, length(MA_vol))
df5 <- data.frame(R_id, MA_vol)
df <- bind_rows(df1, df2, df3, df4, df5)
# Order based on each min value (high to low)
R_minvalues <- df %>%
group_by(R_id) %>% # group by recession id
slice(which.min(MA_vol)) %>% # extract min volume values for each recession
select(R_id, MA_vol)
x <- R_minvalues[with(R_minvalues, order(-MA_vol)), ] # order by MA-vol min value (high to low)
R_id_order <- as.numeric(x$R_id)
# Reorder dataframe based on R_minvalues (high to low)
MRC_DF <- df %>%
arrange(match(R_id, R_id_order)) %>% # match R_id rows with R_id_order
transform(t = 1:nrow(df)) %>% # create t (time) column the length of the df
select(t, R_id, MA_vol) # select columns
R_order_chr <- as.character(R_id_order) # convert R_id_order to character so can rearrange columns
MRC_DF_wide <- dcast(setDT(MRC_DF), t ~ R_id, value.var = "MA_vol") %>% # convert df to wide format
select(all_of(R_order_chr)) # rearrange column order
colnames(MRC_DF_wide)[1:ncol(MRC_DF_wide)] <-
paste("R", colnames(MRC_DF_wide)[1:ncol(MRC_DF_wide)], sep = "") # add "R_" to start of numbers so syntax is correct
以下代碼產生了預期的結果,但它一次只執行一列,并且需要手動輸入(指定列名):
# identify positional index of minimum value and corresponding closest value in next column
a <- which.min(MRC_DF_wide$R15) # position of min value in 1st column
b <-
which.min(abs(MRC_DF_wide$R13 - min(MRC_DF_wide$R15, na.rm = TRUE))) # position of closest value in 2nd column
# 2nd column # 1st column
c <- b - a # positional index difference
# shift column rows up
shift <- function(x, n){
c(x[-(seq(n))], rep(NA, n))
}
MRC_DF_wide$R13 <- shift(MRC_DF_wide$R13, c) # shift 2nd column up by positional index difference
我想創建一個函式,它遍歷列 1 和 2 ,然后是 2 和 3 等等ncol
。dataframe
這是我的嘗試,它突出顯示列 id,但它不成功:
matching.strip.fn <- function(df) {
min_index <- which.min(df[[i]]) # positional index of min value in 1st column
match_index <- which.min(abs(df[[i 1]] - min(df[[i]], na.rm = TRUE))) # positional index of closest value in 2nd column
# 2nd column 1st column
index_diff <- match_index - min_index # positional index difference
df$i 1 <- c(df[-(seq(index_diff))], rep(NA, index_diff)) # shift values up by positional difference in 2nd column
# 2nd column
}
提前致謝!
uj5u.com熱心網友回復:
我認為你可以很容易地解決這個問題purrr::accumulate()
:
accumulate(MRC_DF_wide, \(.x, .y) {
.y <- .y[!is.na(.y)]
pos <- which.min(.x) - which.min(abs(min(.x, na.rm = T) - .y))
c(rep(NA, pos), .y, rep(NA, length(.x) - pos - length(.y)))
}) |>
set_names(names(MRC_DF_wide)) |>
as.data.frame() %>%
filter(apply(., 1, \(x) ! all(is.na(x))))
#> R15 R13 R4 R8 R2
#> 1 0.2486667 NA NA NA NA
#> 2 0.2463333 NA NA NA NA
#> 3 0.2426667 NA NA NA NA
#> 4 0.2423333 NA NA NA NA
#> 5 0.2376667 NA NA NA NA
#> 6 0.2323333 NA NA NA NA
#> 7 0.2270000 NA NA NA NA
#> 8 0.2246667 NA NA NA NA
#> 9 0.2216667 NA NA NA NA
#> 10 0.2203333 NA NA NA NA
#> 11 0.2183333 NA NA NA NA
#> 12 0.2126667 NA NA NA NA
#> 13 0.2076667 0.2073333 NA 0.2180000 NA
#> 14 0.2060000 0.2053333 0.2016667 0.2146667 NA
#> 15 NA 0.2013333 0.1996667 0.2126667 NA
#> 16 NA 0.1993333 0.1980000 0.2103333 NA
#> 17 NA 0.1973333 0.1970000 0.2070000 NA
#> 18 NA 0.1970000 0.1963333 0.2040000 NA
#> 19 NA 0.1966667 0.1956667 0.2010000 NA
#> 20 NA 0.1946667 0.1930000 0.1993333 NA
#> 21 NA 0.1920000 0.1913333 0.1956667 0.2096667
#> 22 NA 0.1890000 0.1900000 0.1950000 0.2063333
#> 23 NA 0.1883333 0.1893333 0.1926667 0.2030000
#> 24 NA 0.1866667 0.1890000 0.1920000 0.1993333
#> 25 NA 0.1843333 0.1863333 0.1896667 0.1953333
#> 26 NA 0.1823333 0.1853333 0.1890000 0.1916667
#> 27 NA 0.1810000 0.1820000 0.1856667 0.1880000
#> 28 NA NA 0.1800000 0.1830000 0.1870000
#> 29 NA NA 0.1780000 0.1786667 0.1850000
#> 30 NA NA 0.1763333 0.1763333 0.1830000
#> 31 NA NA NA 0.1733333 0.1783333
#> 32 NA NA NA 0.1720000 0.1753333
#> 33 NA NA NA 0.1700000 0.1726667
#> 34 NA NA NA 0.1686667 0.1716667
#> 35 NA NA NA 0.1670000 0.1673333
#> 36 NA NA NA NA 0.1666667
#> 37 NA NA NA NA 0.1656667
由reprex 包于 2022-03-21 創建(v2.0.1)
轉載請註明出處,本文鏈接:https://www.uj5u.com/net/451561.html