我正在嘗試以每天和 15 分鐘的時間間隔匯總資料。當我檢查它所在的索引的資料型別時datetime64[ns]
通過以下方式完成:
df['timestamp'] = pd.to_datetime(df['timestamp'])
liquidation_1d_df = df.set_index('timestamp')
print(liquidation_1d_df.index.dtype)
但是,我仍然收到錯誤:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'Index'
我運行以下代碼進行聚合:
liquidation_1d_df.groupby([pd.Grouper(key='timestamp', freq='D'), 'exchange', 'side']).agg(total_liq = ('amount', 'sum'), avg_liq = ('amount', 'mean'))
任何人都知道出了什么問題以及如何解決?
uj5u.com熱心網友回復:
代替 :
liquidation_1d_df = df.set_index('timestamp')
嘗試:
df.set_index('timestamp',inplace=True)
print(df.index.dtype)
或者如果您不想更改原始 df
liquidation_1d_df = df
liquidation_1d_df.set_index('timestamp',inplace=True)
print(liquidation_1d_df.index.dtype)
轉載請註明出處,本文鏈接:https://www.uj5u.com/yidong/483922.html