我想使用rle()
分組資料計算狀態持續時間。這是測驗資料框:
DF <- read.table(text="Time,x,y,sugar,state,ID
0,31,21,0.2,0,L0
1,31,21,0.65,0,L0
2,31,21,1.0,0,L0
3,31,21,1.5,1,L0
4,31,21,1.91,1,L0
5,31,21,2.3,1,L0
6,31,21,2.75,0,L0
7,31,21,3.14,0,L0
8,31,22,3.0,2,L0
9,31,22,3.47,1,L0
10,31,22,3.930,0,L0
0,37,1,0.2,0,L1
1,37,1,0.65,0,L1
2,37,1,1.089,0,L1
3,37,1,1.5198,0,L1
4,36,1,1.4197,2,L1
5,36,1,1.869,0,L1
6,36,1,2.3096,0,L1
7,36,1,2.738,0,L1
8,36,1,3.16,0,L1
9,36,1,3.5703,0,L1
10,36,1,3.970,0,L1
", header = TRUE, sep =",")
我想知道狀態 == 1 的平均長度,按 ID 分組。我創建了一個受以下啟發的函式:https : //www.reddit.com/r/rstats/comments/brpzo9/tidyverse_groupby_and_rle/ 來計算 rle 平均部分:
rle_mean_lengths = function(x, value) {
r = rle(x)
cond = r$values == value
data.frame(count = sum(cond), avg_length = mean(r$lengths[cond]))
}
然后我在分組方面添加:
DF %>% group_by(ID) %>% do(rle_mean_lengths(DF$state,1))
但是,生成的值不正確:
ID | 數數 | 平均長度 |
---|---|---|
1 L0 | 2 | 2 |
2 L1 | 2 | 2 |
L0 是正確的,L1 沒有 state == 1 的實體,因此平均值應該為零或 NA。我將問題分解為簡單的總結:
DF %>% group_by(ID) %>% summarize_at(vars(state),list(name=mean)) # This works but if I use summarize it gives me weird values again.
如何為 do() 執行等效的 summarise_at()?還是有其他解決方法?謝謝
uj5u.com熱心網友回復:
由于它是一個 data.frame 列,我們可能需要unnest
之后
library(dplyr)
library(tidyr)
DF %>%
group_by(ID) %>%
summarise(new = list(rle_mean_lengths(state, 1)), .groups = "drop") %>%
unnest(new)
或洗掉list
和unpack
DF %>%
group_by(ID) %>%
summarise(new = rle_mean_lengths(state, 1), .groups = "drop") %>%
unpack(new)
# A tibble: 2 × 3
ID count avg_length
<chr> <int> <dbl>
1 L0 2 2
2 L1 0 NaN
在 OP 的do
代碼中,應該提取的列不應該來自整個資料,而是來自來自 lhs ie 的資料.
(注意這do
是不推薦使用的。所以最好使用summarise
withunnest/unpack
DF %>%
group_by(ID) %>%
do(rle_mean_lengths(.$state,1))
# A tibble: 2 × 3
# Groups: ID [2]
ID count avg_length
<chr> <int> <dbl>
1 L0 2 2
2 L1 0 NaN
轉載請註明出處,本文鏈接:https://www.uj5u.com/ruanti/464566.html