我正在嘗試計算“類”列中具有相同值的每對元素之間“時間”列中的差異。這是一個輸入示例:
class name time
0 A Bob 2022-09-05 07:22:15
1 A Sam 2022-09-04 17:18:29
2 B Bob 2022-09-04 03:29:06
3 B Sue 2022-09-04 01:28:34
4 A Carol 2022-09-04 10:40:23
這是一個輸出:
class name1 name2 timeDiff
0 A Bob Carol 0 days 20:41:52
1 A Bob Sam 0 days 14:03:46
2 A Carol Sam 0 days 06:38:06
3 B Bob Sue 0 days 02:00:32
我寫了這段代碼來解決這個問題:
from itertools import combinations
df2 = pd.DataFrame(columns=['class', 'name1', 'name2', 'timeDiff'])
for c in df['class'].unique():
df_class = df[df['class'] == c]
groups = df_class.groupby(['name'])['time']
if len(df_class) > 1:
out = (pd
.concat({f'{k1} {k2}': pd.Series(data=np.abs(np.diff([g2.values[0],g1.values[0]])).astype('timedelta64[s]'), index=[f'{k1} {k2}'], name='timeDiff')
for (k1, g1), (k2, g2) in combinations(groups, 2)},
names=['name']
)
.reset_index()
)
new = out["name"].str.split(" ", n = -1, expand = True)
out["name1"]= new[0].astype(str)
out["name2"]= new[1].astype(str)
out["class"] = c
del out['level_1'], out['name']
df2 = df2.append(out, ignore_index=True)
如果不回圈遍歷所有類值,我就沒有提出解決方案。但是,如果輸入表很大,這將非常耗時。有沒有人有任何不使用回圈的解決方案?
uj5u.com熱心網友回復:
整個事情是一個自我交叉連接和一個時間差
import pandas as pd
df = pd.DataFrame({
'class': ['A', 'A', 'B', 'B', 'A'],
'name': ['Bob', 'Sam', 'Bob', 'Sue', 'Carol'],
'time': [
pd.Timestamp('2022-09-05 07:22:15'),
pd.Timestamp('2022-09-04 17:18:29'),
pd.Timestamp('2022-09-04 03:29:06'),
pd.Timestamp('2022-09-04 01:28:34'),
pd.Timestamp('2022-09-04 10:40:23'),
]
})
rs = list()
for n, df_g in df.groupby('class'):
t_df = df_g.merge(
df_g, how='cross',
suffixes=('_1', '_2')
)
t_df = t_df[t_df['name_1'] != t_df['name_2']]
t_df = t_df.drop(['class_2'], axis=1)\
.rename({'class_1': 'class'}, axis=1).reset_index(drop=True)
t_df['timeDiff'] = abs(t_df['time_1'] - t_df['time_2'])\
.astype('timedelta64[ns]')
t_df = t_df.drop(['time_1', 'time_2'], axis=1)
rs.append(t_df)
rs_df = pd.concat(rs).reset_index(drop=True)
uj5u.com熱心網友回復:
使用Aggregrate和Itertools檢查下面沒有 Outerjoin的代碼
from itertools import combinations
# Function to create list of names
def agg_to_list(value):
return list(list(i) for i in combinations(list(value), 2))
# Fucntion to calculate list of time & calculate differences between them
def agg_to_list_time(value):
return [ t[0] - t[1] for t in list(combinations(list(value), 2))]
# Apply aggregate functions
updated_df = df.groupby(['class']).agg({'name':agg_to_list,'time':agg_to_list_time})
# Explode DataFrame & rename column
updated_df = updated_df.explode(['name','time']).rename(columns={'time':'timediff'})
# Unpack name column in two new columns
updated_df[['name1','name2']] = pd.DataFrame(updated_df.name.tolist(), index=updated_df.index)
# Final DataFrame
print(updated_df.reset_index()[['class','name1','name2','timediff']])
輸出:
class name1 name2 timediff
0 A Bob Sam 0 days 14:03:46
1 A Bob Carol 0 days 20:41:52
2 A Sam Carol 0 days 06:38:06
3 B Bob Cue 0 days 02:00:32
轉載請註明出處,本文鏈接:https://www.uj5u.com/qukuanlian/507681.html