主頁 > 後端開發 > Java獲取多執行緒執行結果方式的歸納與總結

Java獲取多執行緒執行結果方式的歸納與總結

2021-04-28 09:35:02 後端開發

在日常的專案開發中,我們會經常遇到通過多執行緒執行程式并需要回傳執行結果的場景,下面我們就對獲取多執行緒回傳結果的幾種方式進行一下歸納,并進行簡要的分析與總結,

一、Thread.join

在一些簡單的應用場景中我們可以使用執行緒本身提供的join方法,我們知道join方法的目的是讓一個執行緒等待另一個執行緒結束后才能執行,利用此原理我們可以設定一個監控執行緒用來等待程式執行緒執行完畢后輸出回傳結果,下面我們看下具體示例代碼

首先定義一個結果物體類

public class Result {
    private String value;

    public String getValue() {
        return value;
    }

    public void setValue(String value) {
        this.value =https://www.cnblogs.com/dafanjoy/archive/2021/04/28/ value;
    }
}

定義作業執行緒,模擬程式執行并輸出執行緒執行結果

public class WorkThread extends Thread {
    
    private Result result ;
    
    public void init(Result result) {
        this.result = result;
    }
    
    public void run() {
        try {
            Thread.sleep(1000*10);//模擬程式執行
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        result.setValue("執行緒執行完畢,輸出結果");
    }

}

主執行緒等待作業執行緒執行,并獲取作業執行緒的執行成果

public class MainThread {
    public static void main(String[] args) throws InterruptedException {
        Result result = new Result();
        WorkThread workThread = new WorkThread();
        workThread.init(result);
        System.out.println("執行緒啟動");
        workThread.start();
        System.out.println("執行緒等待");
        // 等待work執行緒運行完再繼續運行
        workThread.join();
        System.out.println("執行緒執行結果:"+result.getValue());
    }
}

輸出結果

執行緒啟動
執行緒等待
執行緒執行結果:執行緒執行完畢,輸出結果

以上代碼通過Thread.join的方式,模擬了一個最基本的獲取執行緒執行結果場景,采用Thread.join的方式雖然使用方便,但這種原生的方式只適用于一些簡單的應用場景中,其主要存在以下問題:

1、獲取多個執行緒回傳結果時較為繁瑣,需要自己手動實作;

2、與執行緒池無法配合使用;

3、作業執行緒內部執行復雜度與耗時不確定,程式需要額外完善;

4、本質上還是同步回傳結果,主執行緒阻塞;

二、CountDownLatch

CountDownLatch做為jdk提供的多執行緒同步工具,CountDownLatch其實本質上可以看做一個執行緒計數器,統計多個執行緒執行完成的情況,適用于控制一個或多個執行緒等待,直到所有執行緒都執行完畢的場景,因此我們可以利用其功能特點實作獲取多個執行緒的執行結果,一定程度上彌補了Thread.join的不足,代碼示例如下:

作業執行緒

public class WorkThread extends Thread {
    private Vector<Result> vectors ;
    
     private CountDownLatch countDownLatch;
    
    public WorkThread(CountDownLatch countDownLatch) {
        this.countDownLatch=countDownLatch;
    }
    
    public void init(Vector<Result> vectors) {
        this.vectors = vectors;
    }
    
    public void run() {
        try {
            Thread.sleep(1000*3);//模擬程式執行
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        Result result = new Result();
        result.setValue(Thread.currentThread().getName()+"執行緒執行完畢,輸出結果");
        vectors.add(result);//結果放入Vector中
        countDownLatch.countDown();
    }
}

主執行緒

public class MainThread {

    public static void main(String[] args) throws InterruptedException {
        Vector<Result> vectors = new Vector<Result>();//定義一個Vector做為存盤回傳結果的容器;
        final CountDownLatch countDownLatch = new CountDownLatch(5);
        // 啟動多個作業執行緒
        for (int i = 0; i < 5; i++) {
            WorkThread workThread = new WorkThread(countDownLatch);
            workThread.init(vectors);
            workThread.start();
        }
        System.out.println("主執行緒等待作業執行緒執行");
        countDownLatch.await();
        for (int i=0; i<vectors.size(); i++) {
            System.out.println(vectors.get(i).getValue());        
        }
        
    }

}

輸出結果

主執行緒等待作業執行緒執行
Thread-0執行緒執行完畢,輸出結果
Thread-1執行緒執行完畢,輸出結果
Thread-2執行緒執行完畢,輸出結果
Thread-4執行緒執行完畢,輸出結果
Thread-3執行緒執行完畢,輸出結果

通過利用jdk的多執行緒工具類CountDownLatch,我們可以等待多個執行緒執行完畢后獲取結果,但這種方式局限性較多,如果你的應用場景中啟動的執行緒次數是固定的且需要等待執行結果全部回傳后統一處理,使用CountDownLatch是一個不錯的選擇,

三、Future

1、Future與FutureTask

使用Future,包括 FutureTask、CompletionService、CompletableFuture等

首先我們使用Future配合執行緒池,獲取執行緒池執行執行緒的回傳結果

定義一個實作Callable介面的作業執行緒

public class WorkThread implements Callable<Result> {
    
    public Result call() throws Exception {
        Thread.sleep(5000);
        Result result = new Result();
        result.setValue(Thread.currentThread().getName()+"執行緒執行完畢,輸出結果");
        return result;
    }
}

主執行緒

public class MainThread {
     public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {
         ExecutorService taskPool = new ThreadPoolExecutor(5, 15, 1000, TimeUnit.MILLISECONDS,
                    new ArrayBlockingQueue<>(10), new ThreadPoolExecutor.CallerRunsPolicy());
         Future<Result> future = taskPool.submit(new WorkThread());
         System.out.println("執行緒池執行作業執行緒");
         Result result = future.get();//注意這里get操作是阻塞,future仍屬于同步回傳,主執行緒需要阻塞等待結果回傳
         //result = future.get(3,TimeUnit.SECONDS);//設定阻塞超時時間
         System.out.println(result.getValue());
     }
}

Future與FutureTask實作方式基本類似,FutureTask其實是對Futue的進一步封裝,通過上面的代碼我們可以看到Future能夠配合ExecutorService 執行緒池來獲取執行緒執行的結果,使用起來也較為方便,同時可以設定獲取結果的超時時間,避免長時間阻塞帶來的問題,基本上能夠滿足大部分應用場景下的要求, 但Future獲取結果的get方法是阻塞,本質上是個同步回傳,如果希望獲取結果所在執行緒不阻塞,需要引入其他模式相互配合,這個我們下面會說到,

2、CompletionService

CompletionService可以看作FutureTask的一個進階版,通過FutureTask+阻塞佇列的方式能夠按照執行緒執行完畢的順序獲取執行緒執行結果,起到聚合的目的,這個其實跟CountDownLatch差不多,如果你需要執行的執行緒次數是固定的且需要等待執行結果全部回傳后統一處理,可以使用CompletionService,下面我們通過示例代碼進行演示

同上先實作一個作業執行緒,這次我們為了能體現出結果輸出的順序,在作業執行緒內部定義一個編號,編號為偶數的執行緒阻塞一定時間

public class WorkThread implements Callable<Result>{
    int num;//執行緒編號
    
    public WorkThread(int num) {
        this.num=num;
    }
    
    public Result call() throws InterruptedException {
        int count = num;
        if(count%2==0) {//編號為偶數的執行緒阻塞3秒鐘
            Thread.sleep(3*1000);
        }
        Result result = new Result();
        result.setValue(num+"號執行緒執行完畢,輸出結果");
        return result;
    }
}

主執行緒中啟動十個執行緒

public static void main(String[] args) throws InterruptedException, ExecutionException {
        
        ExecutorService exec = new ThreadPoolExecutor(10, 20, 1000, TimeUnit.MILLISECONDS,
                new ArrayBlockingQueue<Runnable>(5), Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.CallerRunsPolicy());
        
        //定義一個阻塞佇列
        BlockingQueue<Future<Result>> futureQueue =    new LinkedBlockingQueue<Future<Result>>();
        
        //傳入ExecutorService與阻塞佇列,構造一個completionService
        CompletionService<Result> completionService = new ExecutorCompletionService<Result>(
                exec,futureQueue);
        
        for(int i=0;i<10;i++) {
            completionService.submit(new WorkThread(i));
        }
        
        for(int i=0;i<10;i++) {
            Result res = completionService.take().get();//注意阻塞佇列take操作,如果獲取不到資料時處于阻塞狀態的
            System.out.println(new Date()+ "--"+res.getValue());
        }
    }
}

輸出結果如下,可以看到奇數編號的執行緒結果優先回傳,偶數編號的執行緒由于阻塞3秒后才輸出回傳結果,符合程式預期;

Sun Apr 11 18:38:46 CST 2021--3號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:46 CST 2021--1號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:46 CST 2021--7號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:46 CST 2021--9號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:46 CST 2021--5號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:49 CST 2021--2號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:49 CST 2021--4號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:49 CST 2021--0號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:49 CST 2021--8號執行緒執行完畢,輸出結果
Sun Apr 11 18:38:49 CST 2021--6號執行緒執行完畢,輸出結果

上面主執行緒代碼中的completionService.take().get()操作,當獲取不到資料也就是當偶數編號執行緒休眠時仍然會產生阻塞, 其實我們只要對上面代碼進行稍微改造就能避免主執行緒的阻塞,這也就引出了我們下面要說的生產者與消費者模式;

四、生產者消費者模式

上面我們列舉的幾種獲取多執行緒執行結果的方式,都是通過不同技術方法來實作的,而生產者消費者模式本身跟你運用的技術實作沒有太多關系,接觸過多執行緒開發的同學應該都有所了解;

生產者消費者模式如下圖所示

生產者消費者模式是一種能夠解耦與同步生產執行緒、消費執行緒、資料集合的多執行緒設計模式,一個或一組生產者執行緒負責向資料佇列中生產資料,也就是執行緒執行結果;另外一個或一組消費者執行緒負責消費處理資料佇列中的資料,生產者執行緒與消費者執行緒相互之間并沒有直接的關聯,資料的互動都是通過資料佇列,通過這種模式能夠很好的在一定程度上解決多執行緒開發中存在執行緒同步與安全的問題,同時程式也會看起來更加清晰與方便理解;

當然一個完善的生產者消費者模式我們需要考慮很多其他方面,  但最關鍵的還是以下兩個要素:

1、執行緒安全,生產者與消費者分別執行讀寫操作,特別是在多個生產執行緒與消費執行緒時,一定會存在資料讀寫的并發操作,所以資料佇列一定要保證執行緒安全;

2、生產與消費的協調,資料佇列滿時生產執行緒是否停止寫入,資料佇列空時消費執行緒是否停止消費,這里一方面需要結合你的應用場景,同時也是需要考慮不必要的性能浪費;

下面看下基本的代碼實作

首先定義一個全域的資料佇列,這里我用的JDK提供的阻塞佇列ArrayBlockingQueue,這里同樣也直接可以上面講到的completionService,當然也可以用其他執行緒安全的資料集合或者自己定義實作,但要注意無論使用哪種都要注意上面的兩個關鍵要素,平常使用中JDK封裝的阻塞佇列已經基本滿足要求;

public class Container {
    public static ArrayBlockingQueue<Result> arrayBlockingQueue = new ArrayBlockingQueue<>(100);//這里最好根據系統負載量評估一個閾值,避免OOM問題
}

生產者執行緒實作,佇列資料插入時是采用put還是offer結合應用場景調整

public class ProducerThread extends Thread {
    
    public void run() {    
        try {
            Thread.sleep(1000*3);//模擬程式執行
            Result result = new Result();
            result.setValue(Thread.currentThread().getName()+"執行緒執行完畢,輸出結果");
            Container.arrayBlockingQueue.put(result);//超過阻塞佇列最大閾值時阻塞,一直阻塞
//            if(!Container.arrayBlockingQueue.offer(result, 5, TimeUnit.SECONDS)) {//規定時間內資料入隊失敗
//                System.err.println("資料入隊失敗");
//            }
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }

}

消費者執行緒實作,消費者執行緒是常駐執行緒,佇列中沒有資料時就執行緒阻塞

public class ConsumerThread extends Thread {
    
    public void run() {
         while (!this.isInterrupted()) {
             try {
                Result result = Container.arrayBlockingQueue.take();//有資料就消費,沒有就阻塞等待
                System.out.println(result.getValue());
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
         }
    }
}

 主執行緒中同時啟動生產執行緒與消費執行緒

public class MainThread  {
    public static void main(String[] args) {
        
        ExecutorService exec = new ThreadPoolExecutor(10, 20, 1000, TimeUnit.MILLISECONDS,
                new ArrayBlockingQueue<Runnable>(5), Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.CallerRunsPolicy());
        
        for(int i=0;i<100;i++) {//使用執行緒池模擬生成者生產資料
            exec.execute(new ProducerThread());
        }
        
        for(int i=0;i<2;i++) {//啟動兩個消費者執行緒
            new ConsumerThread().start();
        }
    }
}

消費者執行緒中會輪詢獲取生產者執行緒執行并放到阻塞佇列中的結果

pool-1-thread-13執行緒執行完畢,輸出結果
pool-1-thread-2執行緒執行完畢,輸出結果
pool-1-thread-1執行緒執行完畢,輸出結果
pool-1-thread-10執行緒執行完畢,輸出結果
pool-1-thread-9執行緒執行完畢,輸出結果
pool-1-thread-15執行緒執行完畢,輸出結果
pool-1-thread-4執行緒執行完畢,輸出結果
pool-1-thread-5執行緒執行完畢,輸出結果
pool-1-thread-8執行緒執行完畢,輸出結果
pool-1-thread-12執行緒執行完畢,輸出結果
pool-1-thread-16執行緒執行完畢,輸出結果
.....................................................
.....................................................

生產者消費者模式是程式開發當中一種十分常見且易于理解與掌握的開發設計模式,且適用場景廣泛,希望大家都能夠深入理解與掌握

五、異步回呼

上面列舉的獲取執行緒執行結果的方法都存在一個共性的問題,就是在等待結果的回傳程序中,主執行緒或者消費者執行緒都是需要阻塞或輪詢等待的,但在一些應用場景下我們是希望執行緒執行的程序中,程式該干嘛干嘛,繼續向下執行,等到結果回傳了再通過回呼來通知,這就是異步回呼的必要性,實作異步回呼思路我這里列舉兩種,一種是多執行緒與回呼,第二種JDK1.8中新加入了一個實作類CompletableFuture,通過這兩種都能夠實作異步獲取執行緒執行結果的目標

1、多執行緒與回呼

這里其實是在多執行緒中通過回呼的方式把結果回傳的方式,我們看下具體實作

首先宣告一個回呼介面

public interface CallBack {

    void notice(Result result);

}

定義作業執行緒,在建構式中傳入回呼介面的實作物件

public class WorkThread implements Runnable{
    int num;//執行緒編號
    
    CallBack callBack;
    
    public WorkThread(CallBack callBack, int num) {
        this.num=num;
        this.callBack = callBack;
    }

    @Override
    public void run() {
        // TODO Auto-generated method stub
        try {
            Thread.sleep((10-num)*1000);//模擬程式運行時間,倒序輸出
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        Result result = new Result();
        result.setValue(num+"號執行緒執行完畢,輸出結果");
        callBack.notice(result);
    }
}

呼叫方及回呼方法具體實作

public class MainThread implements CallBack {
    
    public void run(int num) {
         WorkThread workThread =  new WorkThread(this,num);
         new Thread(workThread).start();
    }

    @Override
    public void notice(Result result) {
        System.out.println("回傳結果:"+result.getValue());    
    }

}

程式執行及輸出

public class App {
     public static void main(String[] args) {
         MainThread mainThread = new MainThread();
         for(int i=0;i<10;i++) {
             mainThread.run(i);
         }
         System.out.println("繼續執行,表示異步操作");
     }
}

輸出結果

繼續執行,表示異步操作
回傳結果:9號執行緒執行完畢,輸出結果
回傳結果:8號執行緒執行完畢,輸出結果
回傳結果:7號執行緒執行完畢,輸出結果
回傳結果:6號執行緒執行完畢,輸出結果
回傳結果:5號執行緒執行完畢,輸出結果
回傳結果:4號執行緒執行完畢,輸出結果
回傳結果:3號執行緒執行完畢,輸出結果
回傳結果:2號執行緒執行完畢,輸出結果
回傳結果:1號執行緒執行完畢,輸出結果
回傳結果:0號執行緒執行完畢,輸出結果

多執行緒+回呼也是一種常見的異步回呼實作方式,但需要注意的是我們自己手動實作異步回呼時還是有很多細節需要考慮完善的,如例外、超時、執行緒開辟與管理等,這里就不再過多的展開,

2、CompletableFuture

JDK1.8中新增的CompletableFuture中通過函式式的編程方法提供了等同于異步回呼的能力,下面我們進行具體實作

作業執行緒

public class WorkThread {

    public static Result call(int num) throws InterruptedException  {
        Thread.sleep(5*1000);//模擬程式執行時間    
        Result result = new Result();
        result.setValue(String.valueOf(num));
        return result;
    }
}

主執行緒

public class MainThread {
public static void main(String[] args) { List<String> reslist = new ArrayList<String>(); ExecutorService exs = Executors.newFixedThreadPool(10);//定義一個執行緒池 List<CompletableFuture<Result>> futureList = new ArrayList<>(); try { for(int i=0;i<10;i++) { final int k = i; CompletableFuture<Result> future=CompletableFuture.supplyAsync(()->{ try { return WorkThread.call(k); } catch (InterruptedException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } return null; },exs).thenApply(e->mul(e)).whenComplete((v, e) -> {//thenApply 里面執行就是回呼函式CallBack System.out.println("執行緒"+k+"完成! 結果:"+v.getValue()+",例外 :"+e+","+new Date()); reslist.add(v.getValue()); }); futureList.add(future);//聚合回傳結果 } System.out.println("繼續執行,表示異步操作"); }catch (Exception e) { // TODO: handle exception } } public static Result mul(Result result){ try { Integer val = Integer.valueOf(result.getValue())*2; result.setValue(val.toString()); } catch (Exception e) { e.printStackTrace(); } return result; } }

輸出結果如下,可以看到主執行緒沒有等待執行緒執行結果回傳,繼續向下執行

直接輸出,標識異步操作
執行緒9完成! 結果:18,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒2完成! 結果:4,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒5完成! 結果:10,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒1完成! 結果:2,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒6完成! 結果:12,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒3完成! 結果:6,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒0完成! 結果:0,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒4完成! 結果:8,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒8完成! 結果:16,例外 :null,Sun Apr 18 17:27:29 CST 2021
執行緒7完成! 結果:14,例外 :null,Sun Apr 18 17:27:29 CST 2021

CompletableFuture中提供了豐富的API實作,提供了諸如聚合計算等一整套功能,這里就不做太多表述,有興趣的小伙伴可以去多做了解,

六、總結

以上就是針對如何獲取多執行緒執行結果進行的方法匯總與簡要分析,雖然方法手段多樣,但本質上都還是圍繞執行緒同步、資料共享、異步回呼等幾個思路來進行實作的,在實際的日常開發中的應用,大家還是要結合業務場景具體問題具體分析,一方面固然是要注意程式性能的高效與實作方式的優雅,但另一方面也要注意避免簡單的問題復雜化,反而過猶不及,特別是在多執行緒的開發程序中,多執行緒的使用并不就等同于處理效率的提高,要不斷的深入學習與理解,結合應用場景,多分析,多總結,在實踐與積累的程序中逐步提高,真正領會,在此我也希望與大家相互勉勵,共同進步,希望本文對大家能有所幫助,其中如有不足與不正確的地方還望指正與海涵,十分感謝,

 

 

關注微信公眾號,查看更多技術文章,

 

 

轉載請註明出處,本文鏈接:https://www.uj5u.com/houduan/280933.html

標籤:其他

上一篇:Java編程語言學習04-二進制與進制間轉換/原碼/反碼/補碼

下一篇:mysql、MongoDB等下載后api-ms-win-crt-runtime-l1-1-0.dll 丟失

標籤雲
其他(157675) Python(38076) JavaScript(25376) Java(17977) C(15215) 區塊鏈(8255) C#(7972) AI(7469) 爪哇(7425) MySQL(7132) html(6777) 基礎類(6313) sql(6102) 熊猫(6058) PHP(5869) 数组(5741) R(5409) Linux(5327) 反应(5209) 腳本語言(PerlPython)(5129) 非技術區(4971) Android(4554) 数据框(4311) css(4259) 节点.js(4032) C語言(3288) json(3245) 列表(3129) 扑(3119) C++語言(3117) 安卓(2998) 打字稿(2995) VBA(2789) Java相關(2746) 疑難問題(2699) 细绳(2522) 單片機工控(2479) iOS(2429) ASP.NET(2402) MongoDB(2323) 麻木的(2285) 正则表达式(2254) 字典(2211) 循环(2198) 迅速(2185) 擅长(2169) 镖(2155) 功能(1967) .NET技术(1958) Web開發(1951) python-3.x(1918) HtmlCss(1915) 弹簧靴(1913) C++(1909) xml(1889) PostgreSQL(1872) .NETCore(1853) 谷歌表格(1846) Unity3D(1843) for循环(1842)

熱門瀏覽
  • 【C++】Microsoft C++、C 和匯編程式檔案

    ......

    uj5u.com 2020-09-10 00:57:23 more
  • 例外宣告

    相比于斷言適用于排除邏輯上不可能存在的狀態,例外通常是用于邏輯上可能發生的錯誤。 例外宣告 Item 1:當函式不可能拋出例外或不能接受拋出例外時,使用noexcept 理由 如果不打算拋出例外的話,程式就會認為無法處理這種錯誤,并且應當盡早終止,如此可以有效地阻止例外的傳播與擴散。 示例 //不可 ......

    uj5u.com 2020-09-10 00:57:27 more
  • Codeforces 1400E Clear the Multiset(貪心 + 分治)

    鏈接:https://codeforces.com/problemset/problem/1400/E 來源:Codeforces 思路:給你一個陣列,現在你可以進行兩種操作,操作1:將一段沒有 0 的區間進行減一的操作,操作2:將 i 位置上的元素歸零。最終問:將這個陣列的全部元素歸零后操作的最少 ......

    uj5u.com 2020-09-10 00:57:30 more
  • UVA11610 【Reverse Prime】

    本人看到此題沒有翻譯,就附帶了一個自己的翻譯版本 思考 這一題,它的第一個要求是找出所有 $7$ 位反向質數及其質因數的個數。 我們應該需要質數篩篩選1~$10^{7}$的所有數,這里就不慢慢介紹了。但是,重讀題,我們突然發現反向質數都是 $7$ 位,而將它反過來后的數字卻是 $6$ 位數,這就說明 ......

    uj5u.com 2020-09-10 00:57:36 more
  • 統計區間素數數量

    1 #pragma GCC optimize(2) 2 #include <bits/stdc++.h> 3 using namespace std; 4 bool isprime[1000000010]; 5 vector<int> prime; 6 inline int getlist(int ......

    uj5u.com 2020-09-10 00:57:47 more
  • C/C++編程筆記:C++中的 const 變數詳解,教你正確認識const用法

    1、C中的const 1、區域const變數存放在堆疊區中,會分配記憶體(也就是說可以通過地址間接修改變數的值)。測驗代碼如下: 運行結果: 2、全域const變數存放在只讀資料段(不能通過地址修改,會發生寫入錯誤), 默認為外部聯編,可以給其他源檔案使用(需要用extern關鍵字修飾) 運行結果: ......

    uj5u.com 2020-09-10 00:58:04 more
  • 【C++犯錯記錄】VS2019 MFC添加資源不懂如何修改資源宏ID

    1. 首先在資源視圖中,添加資源 2. 點擊新添加的資源,復制自動生成的ID 3. 在解決方案資源管理器中找到Resource.h檔案,編輯,使用整個專案搜索和替換的方式快速替換 宏宣告 4. Ctrl+Shift+F 全域搜索,點擊查找全部,然后逐個替換 5. 為什么使用搜索替換而不使用屬性視窗直 ......

    uj5u.com 2020-09-10 00:59:11 more
  • 【C++犯錯記錄】VS2019 MFC不懂的批量添加資源

    1. 打開資源頭檔案Resource.h,在其中預先定義好宏 ID(不清楚其實ID值應該設定多少,可以先新建一個相同的資源項,再在這個資源的ID值的基礎上遞增即可) 2. 在資源視圖中選中專案資源,按F7編輯資源檔案,按 ID 型別 相對路徑的形式添加 資源。(別忘了先把檔案拷貝到專案中的res檔案 ......

    uj5u.com 2020-09-10 01:00:19 more
  • C/C++編程筆記:關于C++的參考型別,專供新手入門使用

    今天要講的是C++中我最喜歡的一個用法——參考,也叫別名。 參考就是給一個變數名取一個變數名,方便我們間接地使用這個變數。我們可以給一個變數創建N個參考,這N + 1個變數共享了同一塊記憶體區域。(參考型別的變數會占用記憶體空間,占用的記憶體空間的大小和指標型別的大小是相同的。雖然參考是一個物件的別名,但 ......

    uj5u.com 2020-09-10 01:00:22 more
  • 【C/C++編程筆記】從頭開始學習C ++:初學者完整指南

    眾所周知,C ++的學習曲線陡峭,但是花時間學習這種語言將為您的職業帶來奇跡,并使您與其他開發人員區分開。您會更輕松地學習新語言,形成真正的解決問題的技能,并在編程的基礎上打下堅實的基礎。 C ++將幫助您養成良好的編程習慣(即清晰一致的編碼風格,在撰寫代碼時注釋代碼,并限制類內部的可見性),并且由 ......

    uj5u.com 2020-09-10 01:00:41 more
最新发布
  • Rust中的智能指標:Box<T> Rc<T> Arc<T> Cell<T> RefCell<T> Weak

    Rust中的智能指標是什么 智能指標(smart pointers)是一類資料結構,是擁有資料所有權和額外功能的指標。是指標的進一步發展 指標(pointer)是一個包含記憶體地址的變數的通用概念。這個地址參考,或 ” 指向”(points at)一些其 他資料 。參考以 & 符號為標志并借用了他們所 ......

    uj5u.com 2023-04-20 07:24:10 more
  • Java的值傳遞和參考傳遞

    值傳遞不會改變本身,參考傳遞(如果傳遞的值需要實體化到堆里)如果發生修改了會改變本身。 1.基本資料型別都是值傳遞 package com.example.basic; public class Test { public static void main(String[] args) { int ......

    uj5u.com 2023-04-20 07:24:04 more
  • [2]SpinalHDL教程——Scala簡單入門

    第一個 Scala 程式 shell里面輸入 $ scala scala> 1 + 1 res0: Int = 2 scala> println("Hello World!") Hello World! 檔案形式 object HelloWorld { /* 這是我的第一個 Scala 程式 * 以 ......

    uj5u.com 2023-04-20 07:23:58 more
  • 理解函式指標和回呼函式

    理解 函式指標 指向函式的指標。比如: 理解函式指標的偽代碼 void (*p)(int type, char *data); // 定義一個函式指標p void func(int type, char *data); // 宣告一個函式func p = func; // 將指標p指向函式func ......

    uj5u.com 2023-04-20 07:23:52 more
  • Django筆記二十五之資料庫函式之日期函式

    本文首發于公眾號:Hunter后端 原文鏈接:Django筆記二十五之資料庫函式之日期函式 日期函式主要介紹兩個大類,Extract() 和 Trunc() Extract() 函式作用是提取日期,比如我們可以提取一個日期欄位的年份,月份,日等資料 Trunc() 的作用則是截取,比如 2022-0 ......

    uj5u.com 2023-04-20 07:23:45 more
  • 一天吃透JVM面試八股文

    什么是JVM? JVM,全稱Java Virtual Machine(Java虛擬機),是通過在實際的計算機上仿真模擬各種計算機功能來實作的。由一套位元組碼指令集、一組暫存器、一個堆疊、一個垃圾回收堆和一個存盤方法域等組成。JVM屏蔽了與作業系統平臺相關的資訊,使得Java程式只需要生成在Java虛擬機 ......

    uj5u.com 2023-04-20 07:23:31 more
  • 使用Java接入小程式訂閱訊息!

    更新完微信服務號的模板訊息之后,我又趕緊把微信小程式的訂閱訊息給實作了!之前我一直以為微信小程式也是要企業才能申請,沒想到小程式個人就能申請。 訊息推送平臺🔥推送下發【郵件】【短信】【微信服務號】【微信小程式】【企業微信】【釘釘】等訊息型別。 https://gitee.com/zhongfuch ......

    uj5u.com 2023-04-20 07:22:59 more
  • java -- 緩沖流、轉換流、序列化流

    緩沖流 緩沖流, 也叫高效流, 按照資料型別分類: 位元組緩沖流:BufferedInputStream,BufferedOutputStream 字符緩沖流:BufferedReader,BufferedWriter 緩沖流的基本原理,是在創建流物件時,會創建一個內置的默認大小的緩沖區陣列,通過緩沖 ......

    uj5u.com 2023-04-20 07:22:49 more
  • Java-SpringBoot-Range請求頭設定實作視頻分段傳輸

    老實說,人太懶了,現在基本都不喜歡寫筆記了,但是網上有關Range請求頭的文章都太水了 下面是抄的一段StackOverflow的代碼...自己大修改過的,寫的注釋挺全的,應該直接看得懂,就不解釋了 寫的不好...只是希望能給視頻網站開發的新手一點點幫助吧. 業務場景:視頻分段傳輸、視頻多段傳輸(理 ......

    uj5u.com 2023-04-20 07:22:42 more
  • Windows 10開發教程_編程入門自學教程_菜鳥教程-免費教程分享

    教程簡介 Windows 10開發入門教程 - 從簡單的步驟了解Windows 10開發,從基本到高級概念,包括簡介,UWP,第一個應用程式,商店,XAML控制元件,資料系結,XAML性能,自適應設計,自適應UI,自適應代碼,檔案管理,SQLite資料庫,應用程式到應用程式通信,應用程式本地化,應用程式 ......

    uj5u.com 2023-04-20 07:22:35 more